
SYLLABUS
REGARDING THE QUALIFICATION CYCLE FROM 2025 TO 2026

1. Basic Course/Module Information
	Course/Module title
	Object - Oriented Programming I

	Course/Module code *
	

	Faculty (name of the unit offering the field of study)
	Faculty of Exact and Technical Sciences

	Name of the unit running the course
	Institute of Computer Science

	Field of study
	Computer Science & Computer Science and Econometrics

	Qualification level
	1st Degree Engineering Studies

	Profile
	General Academic

	Study mode
	Full-time

	Year and semester of studies
	Year I, Semester II

	Course type
	Major engineering

	Language of instruction
	English

	Coordinator
	Wojciech Kozioł, PhD, Eng.

	Course instructor
	Wojciech Gałka, MSc, Eng.

* - as agreed at the faculty

1.1. format – number of hours and ECTS credits

	
Semester
(n0.)
	Lectures
	Classes
	
Laboratories

	Seminars
	Practical classes
	Internships
	others
	ECTS credits

	2
	
	
	30
	
	
	
	
	5

1.2. Course delivery methods
	 conducted in a traditional way
	☐ involving distance education methods and techniques

1.3. Course/Module assessment (exam, pass with a grade, pass without a grade)
	 pass with a grade

2. Prerequisites
	Fundamentals of programming

3. Objectives, Learning Outcomes, Course Content, and Instructional Methods

3.1. Course/Module objectives
	O1
	To acquaint students with issues related to the object-oriented programming paradigm.

	O2
	To teach students to think, design and solve problems using objects and relationships between objects.

	O3
	To teach students to create simple programs in Java language.

	O4
	To acquaint students with Java language and NetBeans environment.

3.2. Course/Module Learning Outcomes (to be completed by the coordinator)

	Learning Outcome
	The description of the learning outcome
defined for the course/module
	Relation to the degree programme outcomes

	LO_01
	He knows basic programming constructs and data structures present in the Java language.
	K_W04, K_W07

	LO_02
	Has basic knowledge about the object oriented programming paradigm and its application; understands such concepts as: class, abstract class, interface, object, encapsulation, inheritance, polymorphism.
	K_W04, K_W07

	LO_03
	The student is able to accurately specify information technology problems and formulate solutions in the Java language, using the known object-oriented programming techniques.
	K_U11,K_U12

	LO_4
	The student is able to use basic programming constructs and data structures in Java languages. He understands their advantages and disadvantages and is able to select them properly taking into account the complexity, efficiency and quality of the created solution.
	K_U10, K_U12

	LO_05
	Is able to create simple applications in Java.
	K_U11

3.3. Course content (to be completed by the coordinator)

A. Lectures

	Content outline

	Java language genesis. Principle of Java technology.

	General form of a Java program. Working in NetBeans environment.

	Identifiers, types, variables, expressions, input-output operations and comments.

	Program control flow and ways of its modification. Iteration and recursion in Java.

	Text variables and string operations in Java.

	Objects, classes, fields and methods, constructors in Java.

	Hermetization of components (based on Java language).

	Inheritance (based on Java).

	Polymorphism (based on Java).

	Abstract classes and interfaces (based on Java language).

	Static class components: static fields, static methods, static initializers (based on Java language).

	Exceptions in Java language.

	Raw and generic types in Java.

	Raw and generic collections in Java.

	Streams and files in Java.

B. Classes, laboratories, seminars, practical classes

	Content outline

	Introduction to NetBeans environment

	Creating and running simple programs in NetBeans environment

	Program control flow in Java - loops, recursions. Conditional expressions.

	Operations on string variables in Java.

	Creating classes and objects in Java.

	Encapsulation in Java.

	Inheritance in Java.

	Polymorphism in Java.

	Abstract classes and methods and interfaces in Java.

	Members of static classes in Java.

	Exception throwing and exception handling in Java.

	Generalized types in Java.

	Use of collections in Java.

	Handling of streams in Java.

3.4. Methods of Instruction

Lecture: A lecture supported by a multimedia presentation
Laboratory classes: Create computer programs based on the content of the tasks in the lab handouts.

4. Assessment techniques and criteria

4.1 Methods of evaluating learning outcomes

	Learning outcome

	Methods of assessment of learning outcomes (e.g. test, oral exam, written exam, project, report, observation during classes)
	Learning format (lectures, classes,…)

	LO-01
	oral answer
	lectures

	LO-o2
	oral answer
	lectures

	LO-o3
	Colloquium
	Laboratory classes

	LO-o4
	Colloquium
	Laboratory classes

	LO-o5
	Colloquium
	Laboratory classes

4.2 Course assessment criteria

	Lectures:
Passing oral answer with at least 50% correct answers.

Laboratory classes:
All colloquia must be passed with a positive mark.

A: The average of the grades earned on all colloquia and class activities yields a grade of A.
B: The average of the grades earned on all colloquia and class activities yields a grade of B.
C: The average of the grades earned on all colloquia and class activities yields a grade of C.
D: The average of the grades earned on all colloquia and class activities yields a grade of D.
E: The average of the grades earned on all colloquia and class activities yields a grade of E.

5. Total student workload needed to achieve the intended learning outcomes
– number of hours and ECTS credits

	Activity
	Number of hours

	Scheduled course contact hours
	30

	Other contact hours involving the teacher (consultation hours, examinations)
	5

	Non-contact hours - student's own work (preparation for classes or examinations, projects, etc.)
	90

	Total number of hours
	125

	Total number of ECTS credits
	5

* One ECTS point corresponds to 25-30 hours of total student workload

6. Internships related to the course/module

	Number of hours

	

	Internship regulations and procedures
	

7. Instructional materials

	Compulsory literature:
· Walter Savitch, JAVA, An introduction to Computer Science & Programming, Prentice Hall, 1999
· Cay S. Horstmann, Gary Cornell, Core Java 2 Advanced Features, Pearson Education (US), 2004

	Complementary literature:
· Bruce. Eckel, Thinking in Java, Prentice Hall, 2006.

Approved by the Head of the Department or an authorised person

5
