
 Załącznik nr 1.5 do Zarządzenia Rektora UR nr 7/2023

SYLABUS
DOTYCZY CYKLU KSZTAŁCENIA 2024-2028

Rok akademicki 2024/2025, 2025/2026

1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE

Nazwa przedmiotu Algorytmy i struktury danych

Kod przedmiotu*
Nazwa jednostki
prowadzącej kierunek Instytut Informatyki, Kolegium Nauk Przyrodniczych

Nazwa jednostki
realizującej przedmiot

Instytut Informatyki, Kolegium Nauk Przyrodniczych

Kierunek studiów Informatyka i ekonometria

Poziom studiów studia pierwszego stopnia

Profil praktyczny

Forma studiów Studia stacjonarne

Rok i semestr/y studiów rok I i II, sem. II i III

Rodzaj przedmiotu przedmiot kierunkowy

Język wykładowy polski

Koordynator dr hab. Jan Bazan, prof. UR, dr hab. Urszula Bentkowska, prof. UR

Imię i nazwisko osoby
prowadzącej / osób
prowadzących

dr hab. Jan Bazan, prof. UR, dr hab. Urszula Bentkowska, prof. UR,
mgr inż. Adrian Ćwiąkała

* -opcjonalnie, zgodnie z ustaleniami w Jednostce

1.1.Formy zajęć dydaktycznych, wymiar godzin i punktów ECTS

Semestr

(nr)
Wykł. Ćw. Konw. Lab. Sem. ZP Prakt.

Inne
(jakie?)

Liczba pkt.
ECTS

2 30 15 3

3 30 15 3

1.2. Sposób realizacji zajęć

 zajęcia w formie tradycyjnej

☐ zajęcia realizowane z wykorzystaniem metod i technik kształcenia na odległość

1.3 Forma zaliczenia przedmiotu (z toku) (egzamin, zaliczenie z oceną, zaliczenie bez oceny)
zaliczenie z oceną po sem. 2 oraz egzamin po sem. 3

2.WYMAGANIA WSTĘPNE

Znajomość zagadnień realizowanych na przedmiotach: elementy logiki i teorii mnogości,
analiza matematyczna, algebra liniowa z geometrią, podstawy programowania,
programowanie obiektowe (wymaganie do części drugiej przedmiotu)

3. CELE, EFEKTY UCZENIA SIĘ , TREŚCI PROGRAMOWE I STOSOWANE METODY DYDAKTYCZNE

3.1 Cele przedmiotu

C1
Nauczenie studentów metod konstrukcji algorytmów i metod analizy ich złożoności
obliczeniowej.

C2
Nauczenie studentów podstawowych struktur danych oraz metod ich implementacji i

wykorzystania w praktyce.

C3
Zapoznanie studentów z przykładową biblioteką standardowych struktur danych.

3.2 Efekty uczenia się dla przedmiotu/ modułu

EK (efekt
uczenia się)

Treść efektu kształcenia zdefiniowanego dla przedmiotu
(modułu) - wiedza minimalna i minimalne umiejętności do
zaliczenia

Odniesienie do
efektów
kierunkowych
(KEK)

EK_01 Student zna notacje asymptotyczne, metody wykorzystywania
ich do wyznaczania złożoności obliczeniowej algorytmów oraz
techniki obliczeniowe pozwalające poprawnie wyznaczać
złożoność obliczeniową (czasową i pamięciową) dla algorytmów
iteracyjnych. Jednak niekoniecznie zna w wystarczającym
stopniu techniki obliczeniowe pozwalające na wyznaczanie
złożoności obliczeniowej algorytmów rekurencyjnych. Zna
podstawowe klasy złożoności obliczeniowej algorytmów, ale
być może nie potrafi poprawnie ocenić ich praktycznego
znaczenia do rozwiązywania rzeczywistych problemów
algorytmicznych.

K_W01, K_W02,

K_K02

EK _02 Student zna abstrakcyjne struktury danych, metody ich
implementacji w przynajmniej jednym języku programowania
oraz gotowe implementacje w dedykowanej bibliotece
standardowej, w tym stosy, kolejki, listy, drzewa, grafy, słowniki,
haszowanie, drzewa przeszukiwań binarnych. W szczególności
student zna budowę tych struktur oraz operacje jakie mogą być
wykonywane na tych strukturach. Jednakże możliwe jest, iż
posiadana wiedza o efektywności tych operacji w kontekście
złożoności obliczeniowej nie pozwala mu na w pełni poprawne
porównanie tych struktur pod względem ich efektywności
obliczeniowej oraz na dobieranie struktur danych do ustalonych
wymagań dotyczących efektywności obliczeniowej
algorytmów.

K_W01, K_W02,

K_K02

EK_03 Student zna zasady formułowania i algorytmizacji zadań oraz
notację zapisu algorytmów w pseudojęzyku i w wybranym
języku programowania, a także podstawowe techniki i metody
projektowania i implementowania algorytmów, w tym metodę
dynamicznego przydziału pamięci, rekurencję, metodę brutalnej
siły, metodę dziel i zwyciężaj, programowanie dynamiczne,
algorytmy zachłanne, metodę Monte Carlo, przeszukiwanie z
nawrotami. Zna także podstawowe algorytmy wyszukiwania i
sortowania. Być może jednak nie zawsze potrafi poprawnie
porównać te metody i algorytmy pod względem efektywności
czasowej i dokładności otrzymanego rozwiązania. Jednak, dla

K_W01, K_W02

trudniejszych problemów może zdarzyć się, że niepoprawnie
dobierze metody i algorytmy do wymagań oczekiwanej
efektywności rozwiązania.

EK_04 Student zna metodę dowodzenia semantycznej poprawności
algorytmów, w tym poszczególne jej kroki (dowód częściowej
poprawności, dowód własności określoności i dowód własności
stopu) oraz rozumie te kroki. Nie musi jednak znać wszystkich
metod dowodzenia tych kroków oraz uzasadnienia
praktycznego dla zasadności każdego z tych kroków.

K_W01, K_W02,

K_K02

EK_05 Student umie poprawnie śledzić algorytm bez rekurencji
zapisany w wybranym języku programowania lub w tzw.
pseudojęzyku.

K_U01, K_U02

EK_06 Student potrafi zastosować abstrakcyjne typy danych do
rozwiązywania problemów z użyciem języka programowania,
przy czym zawsze poprawnie operuje na strukturach danych
przechowujących tylko wartości typów konkretnych.

K_U01, K_U02

EK_07 Student potrafi poprawnie wyznaczać złożoność obliczeniową
algorytmów (czasową i pamięciową) przy wykorzystaniu notacji
asymptotycznych dla algorytmów iteracyjnych. Jednak być
może nie zawsze poprawnie wyznacza złożoności obliczeniowe
algorytmów rekurencyjnych

K_U01, K_U02

EK_08 Student potrafi poprawnie wykorzystać podstawowe techniki i
metody projektowania i implementowania algorytmów, w tym
metodę dynamicznego przydziału pamięci, rekurencję, metodę
brutalnej siły, metodę dziel i zwyciężaj, programowanie
dynamiczne, algorytmy zachłanne, metodę Monte Carlo,
przeszukiwanie z nawrotami oraz algorytmy sortowania,
wyszukiwania i przeszukiwania grafów. Zaprojektowane i
zaimplementowane przez studenta algorytmy zawsze posiadają
własność stopu. Jednak dopuszcza się, by skonstruowany przez
studenta algorytm miał dwa błędy umożliwiające uznanie go za
poprawny z punktu widzenia określoności operacji stosowanych
w algorytmie lub poprawności uzyskanych na wyjściu algorytmu
wyników.

K_U01, K_U02

EK_09 Student weryfikuje semantyczną poprawność algorytmów w
takim zakresie, że potrafi poprawnie zdefiniować warunki alfa i
beta częściowej poprawności algorytmu oraz poprawnie
formułuje warunek stopu i warunek określoności algorytmu. Nie
zawsze jednak musi potrafić poprawnie udowodnić częściową
poprawność oraz warunki stopu i określoności algorytmu.

K_U01, K_U02

3.3 Treści programowe

A. Problematyka wykładu

Treści merytoryczne
Część pierwsza (semestr 2)

1. Ogólne wprowadzenie do przedmiotu. Pseudojęzyk. Śledzenie algorytmów bez rekurencji.

2. Złożoność obliczeniowa algorytmów bez rekurencji.

3. Wybrane metody rozwiązywanie równań rekurencyjnych.

4. Algorytmy z rekurencją i ich śledzenie.

5. Złożoność obliczeniowa algorytmów z rekurencją.

6. Zarys semantycznej poprawności algorytmów i jej praktyczny aspekt (asercje, testy jednostkowe,
dzienniki itd.).

Część druga (semestr 3)

7. Wprowadzenie do metod konstruowania algorytmów.

8. Algorytmy przeszukiwania wyczerpującego

9. Metoda dziel i zwyciężaj oraz programowanie dynamiczne

10. Algorytmy aproksymacyjne.

11. Abstrakcyjne struktury danych (lista, zbiór, drzewo, graf, słownik).

12. Konkretne struktury danych (tablica dynamiczna, lista powiązana, drzewo binarne, tablica
mieszająca).

13. Metody implementacji abstrakcyjnych struktur danych.

14. Podstawowe algorytmy wyszukiwania i sortowania.

15. Implementacja grafów i wybrane algorytmy grafowe.

16. Trudność problemów.

B. Problematyka ćwiczeń audytoryjnych, konwersatoryjnych, laboratoryjnych, zajęć

praktycznych

Treści merytoryczne
Część pierwsza (semestr 2)

1. Zadania na konstruowanie i śledzenie algorytmów bez rekurencji.

2. Zadania na wyznaczanie złożoności obliczeniowej algorytmów bez rekurencji.

3. Zadania na rozwiązywanie równań rekurencyjnych.

4. Zadania na konstruowanie i śledzenie algorytmów rekurencyjnych.

5. Zadania na wyznaczanie złożoności obliczeniowej algorytmów rekurencyjnych.

6. Zadania na dowodzenie semantycznej poprawności algorytmów.

Część druga (semestr 3)

7. Zadanie na konstrukcję algorytmów metodami przeszukiwania wyczerpującego.

8. Zadanie na konstrukcję algorytmów metodami przeszukiwania z nawrotami.

9. Zadanie na konstrukcję algorytmów metodami dziel i zwyciężaj oraz na programowanie
dynamiczne.

10. Zadania na konstrukcję algorytmów zachłannych

11. Zadania na konstrukcję algorytmów metodami stochastycznymi.

12. Zadania na implementację abstrakcyjnych struktur danych, także z użyciem standardowych struktur
danych.

13. Zadania na wyszukiwanie i sortowanie, także z użyciem standardowych implementacji algorytmów
dostępnych w bibliotece standardowych struktur danych.

3.4 Metody dydaktyczne

Wykład: wykład z prezentacją multimedialną
Ćwiczenia: rozwiązywanie zadań "tablicowych"(semestr 2);
Laboratoria: rozwiązywanie zadań, w tym programistycznych z użyciem komputera (semestr 3)

4. METODY I KRYTERIA OCENY

4.1 Sposoby weryfikacji efektów uczenia się

Symbol efektu

Metody oceny efektów kształcenia

(np.: kolokwium, egzamin ustny, egzamin

pisemny, projekt, sprawozdanie, obserwacja w

trakcie zajęć)

Forma zajęć

dydaktycznych

(w, ćw, …)

EK_ 01 Kolokwium pisemne, egzamin pisemny W, ĆW

EK_ 02 Kolokwium pisemne, egzamin pisemny W, ĆW

EK_ 03 Kolokwium pisemne, egzamin pisemny W, LAB

EK_ 04 Kolokwium pisemne, egzamin pisemny W, ĆW

EK_ 05 Kolokwium pisemne W, ĆW

EK_ 06 Kolokwium przy komputerze W, LAB

EK_ 07 Kolokwium pisemne W, ĆW

EK_ 08 Kolokwium przy komputerze W, LAB

EK_ 09 Kolokwium pisemne W, ĆW

4.2 Warunki zaliczenia przedmiotu (kryteria oceniania)

Efekt Ocena Kryteria otrzymania oceny

EK_01 dst Student zna notacje asymptotyczne, metody wykorzystywania ich do wyznaczania

złożoności obliczeniowej algorytmów oraz techniki obliczeniowe pozwalające

poprawnie wyznaczać złożoność obliczeniową (czasową i pamięciową) tylko dla

algorytmów iteracyjnych. Nie zna lub zna w niewystarczającym stopniu techniki

obliczeniowe pozwalające na wyznaczanie złożoności dla algorytmów

rekurencyjnych. Zna podstawowe klasy złożoności obliczeniowej algorytmów, ale

nie zawsze potrafi je porównać z punktu widzenia złożoności obliczeniowej oraz

poprawnie ocenić ich praktyczne znaczenie do rozwiązywania rzeczywistych

problemów algorytmicznych.

db Student zna notacje asymptotyczne, metody wykorzystywania ich do wyznaczania

złożoności obliczeniowej algorytmów, ale zna niezbędne techniki obliczeniowe

pozwalające poprawnie wyznaczać złożoność obliczeniową (czasową i pamięciową)

tylko dla algorytmów iteracyjnych oraz dla algorytmów z rekurencją prostą. Nie zna

lub zna w niewystarczającym stopniu techniki obliczeniowe pozwalające na

wyznaczanie złożoności dla algorytmów z rekurencją rozgałęzioną. Zna

podstawowe klasy złożoności obliczeniowej algorytmów oraz potrafi je porównać z

punktu widzenia złożoności obliczeniowej, ale nie zawsze potrafi poprawnie ocenić

ich praktyczne znaczenie do rozwiązywania rzeczywistych problemów

algorytmicznych.

bdb Student zna notacje asymptotyczne, metody wykorzystywania ich do wyznaczania

złożoności obliczeniowej algorytmów, w tym niezbędne techniki obliczeniowe

pozwalające poprawnie wyznaczać złożoność obliczeniową (czasową i pamięciową)

zarówno dla algorytmów iteracyjnych, jak i dla algorytmów z rekurencją (w tym

prostą i rozgałęzioną). Zna podstawowe klasy złożoności obliczeniowej algorytmów,

potrafi je porównać z punktu widzenia złożoności obliczeniowej oraz potrafi ocenić

ich praktyczne znaczenie do rozwiązywania rzeczywistych problemów

algorytmicznych.

EK_02 dst Student zna abstrakcyjne struktury danych, metody ich implementacji

w przynajmniej jednym języku programowania oraz gotowe implementacje w

dedykowanej bibliotece standardowej, w tym stosy, kolejki, listy, drzewa, grafy,

słowniki, haszowanie, drzewa przeszukiwań binarnych. W szczególności student zna

budowę tych struktur oraz operacje jakie mogą być wykonywane na tych

strukturach. Jednakże posiadana wiedza o efektywności tych operacji w

konkretnych implementacjach tych struktur w kontekście złożoności obliczeniowej,

nie pozwala mu na w pełni poprawne porównanie tych struktur pod względem ich

efektywności obliczeniowej oraz na dobieranie struktur danych do ustalonych

wymagań dotyczących efektywności obliczeniowej algorytmów.

db Student zna abstrakcyjne struktury danych, metody ich implementacji w

przynajmniej jednym języku programowania oraz gotowe implementacje w

dedykowanej bibliotece standardowej, w tym stosy, kolejki, listy, drzewa, grafy,

słowniki, haszowanie, drzewa przeszukiwań binarnych. W szczególności student zna

budowę tych struktur oraz operacje jakie mogą być wykonywane na tych

strukturach. Ponadto, ma wiedzę o efektywności tych operacji w kontekście

złożoności obliczeniowej, co daje mu możliwość porównania tych struktur pod

względem ich efektywności obliczeniowej. Nie potrafi jednak w pełni poprawnie

dobierać struktur danych do ustalonych wymagań dotyczących efektywności

obliczeniowej rozwiązania danego problemu algorytmicznego.

bdb Student zna abstrakcyjne struktury danych, metody ich implementacji w

przynajmniej jednym języku programowania oraz gotowe implementacje w

dedykowanej bibliotece standardowej, w tym stosy, kolejki, listy, drzewa, grafy,

słowniki, haszowanie, drzewa przeszukiwań binarnych. W szczególności student zna

budowę tych struktur oraz operacje jakie mogą być wykonywane na tych

strukturach. Ponadto, ma wiedzę o efektywności tych operacji w kontekście

złożoności obliczeniowej, co daje mu możliwość porównania tych struktur pod

względem ich efektywności obliczeniowej oraz dobierania struktur danych do

ustalonych wymagań dotyczących efektywności obliczeniowej.

EK_03 dst Student zna zasady formułowania i algorytmizacji zadań oraz notację zapisu

algorytmów w pseudojęzyku i w wybranym języku programowania, a także

podstawowe techniki i metody projektowania i implementowania algorytmów, w

tym metodę dynamicznego przydziału pamięci, rekurencję, metodę brutalnej siły,

metodę dziel i zwyciężaj, programowanie dynamiczne, algorytmy zachłanne,

metodę Monte Carlo, przeszukiwanie z nawrotami. Zna także podstawowe

algorytmy wyszukiwania i sortowania. Jednak nie zawsze potrafi poprawnie

porównać te metody algorytmy pod względem efektywności czasowej i dokładności

otrzymanego rozwiązania. Nie zawsze potrafi także dobrze dobierać metody i

algorytmy do wymagań oczekiwanej efektywności rozwiązania danego problemu.

db Student zna zasady formułowania i algorytmizacji zadań oraz notację zapisu

algorytmów w pseudojęzyku i w wybranym języku programowania, a także

podstawowe techniki i metody projektowania i implementowania algorytmów, w

tym metodę dynamicznego przydziału pamięci, rekurencję, metodę brutalnej siły,

metodę dziel i zwyciężaj, programowanie dynamiczne, algorytmy zachłanne,

metodę Monte Carlo, przeszukiwanie z nawrotami. Zna także podstawowe

algorytmy wyszukiwania i sortowania. Potrafi porównać te metody i algorytmy pod

względem efektywności czasowej i dokładności otrzymanego rozwiązania. Nie

zawsze potrafi jednak dobrze dobierać metody i algorytmy do wymagań

oczekiwanej efektywności rozwiązania danego problemu.

bdb Student zna zasady formułowania i algorytmizacji zadań oraz notację zapisu

algorytmów w pseudojęzyku i w wybranym języku programowania, a także

podstawowe techniki i metody projektowania i implementowania algorytmów, w

tym metodę dynamicznego przydziału pamięci, rekurencję, metodę brutalnej siły,

metodę dziel i zwyciężaj, programowanie dynamiczne, algorytmy zachłanne,

metodę Monte Carlo, przeszukiwanie z nawrotami. Zna także podstawowe

algorytmy wyszukiwania i sortowania. Potrafi porównać te metody i algorytmy pod

względem efektywności czasowej i dokładności otrzymanego rozwiązania, a także

poprawnie dobiera metody do wymagań oczekiwanej efektywności rozwiązania

danego problemu.

EK_04 dst Student zna metodę dowodzenia semantycznej poprawności algorytmów, w tym

poszczególne jej kroki (dowód częściowej poprawności, dowód własności

określoności i dowód własności stopu) oraz rozumie te kroki. Nie zna jednak metod

dowodzenia wszystkich tych kroków oraz nie zna uzasadnienia praktycznego dla

zasadności każdego z tych kroków.

db Student zna metodę dowodzenia semantycznej poprawności algorytmów, w tym

poszczególne jej kroki (dowód częściowej poprawności, dowód własności

określoności i dowód własności stopu) oraz rozumie te kroki oraz zna metody

dowodzenia tych kroków. Jednak nie zna uzasadnienia praktycznego dla zasadności

każdego z tych kroków.

bdb Student zna metodę dowodzenia semantycznej poprawności algorytmów, w tym

poszczególne jej kroki (dowód częściowej poprawności, dowód własności

określoności i dowód własności stopu), rozumie te kroki, zna metody dowodzenia

tych kroków oraz potrafi uzasadnić praktycznie zasadność każdego z tych kroków.

EK_05 dst Student umie śledzić algorytm iteracyjny bez rekurencji zapisany w wybranym

języku programowania lub w tzw. pseudojęzyku.

db Student umie śledzić algorytm iteracyjny bez rekurencji rozgałęzionej zapisany w

wybranym języku programowania lub w tzw. pseudojęzyku.

bdb Student umie śledzić algorytm iteracyjny oraz rekurencyjny (w tym z rekurencją

rozgałęzioną) zapisany w wybranym języku programowania lub w tzw.

pseudojęzyku.

EK_06 dst Student potrafi zastosować abstrakcyjne typy danych do rozwiązywania

problemów z użyciem języka programowania, przy czym operuje na strukturach

danych przechowujących tylko wartości typów prostych (np. int, byte, float,

double, char, boolean itd.)

db Student potrafi zastosować abstrakcyjne typy danych do rozwiązywania problemów

z użyciem języka programowania, przy czym operuje na strukturach danych

przechowujących tylko wartości typów prostych i obiektowych-zdefiniowanych (np.

String, Integer, Double, itd.).

bdb Student potrafi zastosować abstrakcyjne typy danych do rozwiązywania problemów

z użyciem języka programowania, przy czym operuje na strukturach danych

przechowujących wartości dowolnych typów prostych i obiektowych, w tym typów

zdefiniowanych przez studenta (np. Osoba, Punkt, itd.).

EK_07 dst Student potrafi poprawnie wyznaczać złożoność obliczeniową algorytmów

(czasową i pamięciową) przy wykorzystaniu notacji asymptotycznych dla

algorytmów iteracyjnych. Nie potrafi poprawnie wyznaczać złożoności

obliczeniowej algorytmów dla algorytmów rekurencyjnych.

db Student potrafi poprawnie wyznaczać złożoność obliczeniową algorytmów

(czasową i pamięciową) przy wykorzystaniu notacji asymptotycznych dla

algorytmów iteracyjnych oraz dla algorytmów rekurencyjnych bez rekurencji

rozgałęzionej. Nie potrafi poprawnie wyznaczać złożoności obliczeniowej

algorytmów dla algorytmów z rekurencją rozgałęzioną.

bdb Student potrafi poprawnie wyznaczać złożoność obliczeniową algorytmów

(czasową i pamięciową) przy wykorzystaniu notacji asymptotycznych dla

algorytmów iteracyjnych oraz dla algorytmów rekurencyjnych (w tym z rekurencją

rozgałęzioną).

EK_08 dst Student potrafi poprawnie wykorzystać podstawowe techniki i metody

projektowania i implementowania algorytmów, w tym metodę dynamicznego

przydziału pamięci, rekurencję, metodę brutalnej siły, metodę dziel i zwyciężaj,

programowanie dynamiczne, algorytmy zachłanne, metodę Monte Carlo,

przeszukiwanie z nawrotami oraz algorytmy sortowania, wyszukiwania i

przeszukiwania grafów. Zaprojektowane i zaimplementowane przez studenta

algorytmy zawsze posiadają własność stopu. Jednak algorytm skonstruowany

przez studenta podczas weryfikacji efektu kształcenia ma 2 błędy umożliwiające

uznanie go za poprawny z punktu widzenia określoności operacji stosowanych w

algorytmie lub poprawności uzyskanych na wyjściu algorytmu wyników.

db Student potrafi poprawnie wykorzystać podstawowe techniki i metody

projektowania i implementowania algorytmów, w tym metodę dynamicznego

przydziału pamięci, rekurencję, metodę brutalnej siły, metodę dziel i zwyciężaj,

programowanie dynamiczne, algorytmy zachłanne, metodę Monte Carlo,

przeszukiwanie z nawrotami oraz algorytmy sortowania, wyszukiwania i

przeszukiwania grafów. Zaprojektowane i zaimplementowane przez studenta

algorytmy zawsze posiadają własność stopu. Jednak algorytm skonstruowany przez

studenta podczas weryfikacji efektu kształcenia ma jeden błąd umożliwiający

uznanie go za poprawny z punktu widzenia określoności operacji stosowanych w

algorytmie lub poprawności uzyskanych na wyjściu algorytmu wyników.

bdb Student potrafi poprawnie wykorzystać podstawowe techniki i metody

projektowania i implementowania algorytmów, w tym metodę dynamicznego

przydziału pamięci, rekurencję, metodę brutalnej siły, metodę dziel i zwyciężaj,

programowanie dynamiczne, algorytmy zachłanne, metodę Monte Carlo,

przeszukiwanie z nawrotami oraz algorytmy sortowania, wyszukiwania i

przeszukiwania grafów. Zaprojektowane i zaimplementowane przez studenta

algorytmy zawsze posiadają własność stopu. Ponadto, algorytm skonstruowany

przez studenta podczas weryfikacji efektu kształcenia jest poprawny z punktu

widzenia określoności operacji stosowanych w algorytmie oraz poprawności

uzyskanych na wyjściu algorytmu wyników.

EK_09 dst Student weryfikuje semantyczną poprawność algorytmów w takim zakresie, że

potrafi poprawnie zdefiniować warunki alfa i beta częściowej poprawności

algorytmu oraz poprawnie formułuje warunek stopu i warunek określoności

algorytmu. Nie potrafi jednak udowodnić formalnie częściowej poprawności oraz

warunku stopu i określoności algorytmu.

db Student weryfikuje semantyczną poprawność algorytmów w takim zakresie, że

potrafi poprawnie zdefiniować warunki alfa i beta częściowej poprawności

algorytmu oraz poprawnie formułuje warunek stopu i warunek określoności

algorytmu. Potrafi także uzasadnić warunek stopu i określoności algorytmu Nie

potrafi jednak udowodnić formalnie częściowej poprawności algorytmu.

bdb Student w pełni potrafi przeprowadzić weryfikację semantycznej poprawności

algorytmu, tzn. potrafi poprawnie zdefiniować warunki alfa i beta częściowej

poprawności algorytmu oraz warunek stopu i warunek określoności algorytmu.

Potrafi także uzasadnić warunek stopu i określoności algorytmu, oraz udowodnić

formalnie częściową poprawność algorytmu.

Zasady uzyskania oceny końcowej:

Zaliczenie ćwiczeń i laboratorium następuje na podstawie zaliczenia wszystkich efektów

weryfikowanych przez planowane w danym okresie metody weryfikacji. Przy tym zakłada się, że każda

metoda weryfikacji dostarcza osobne oceny dla każdego z weryfikowanych przez nią efektów

kształcenia. Jeśli dany efekt jest weryfikowany przez więcej niż jedną metodę, to ocena weryfikująca

osiągnięcie tego efektu jest obliczana jako średnia arytmetyczna ocen uzyskanych w poszczególnych

metodach weryfikowania tego efektu.

Student otrzymuje z zaliczenia ocenę niedostateczny, gdy metody weryfikacji wykażą, iż co najmniej

jeden z efektów nie został osiągnięty (średnia ocena dla tego efektu jest niższa niż 3.0);

Student otrzymuje ocenę dostateczny, gdy przeciętnie każdy z efektów zostanie osiągnięty na

poziomie co najmniej 3.0, ale chociaż jeden z efektów został osiągnięty na poziomie mniejszym od 3.75;

Student otrzymuje ocenę dobry, gdy przeciętnie każdy z efektów zostanie osiągnięty na poziomie co

najmniej 3.75, ale chociaż jeden z efektów został osiągnięty na poziomie mniejszym od 4.75;

Student otrzymuje ocenę bardzo dobry, gdy przeciętnie każdy z efektów zostanie osiągnięty na

poziomie co najmniej 4.75;

Zaliczenie przedmiotu następuje na podstawie oceny uzyskanej na egzaminie

Student otrzymuje ocenę niedostateczny, gdy nie zaliczył ćwiczeń lub egzamin wykaże, iż co najmniej

jeden z efektów nie został osiągnięty (średnia ocena dla tego efektu jest niższa niż 3.0);

Student otrzymuje ocenę dostateczny, gdy posiada zaliczenie z ćwiczeń, a przeciętnie każdy z efektów

weryfikowanych na egzaminie zostanie osiągnięty na poziomie co najmniej 3.0, ale chociaż jeden z

efektów został osiągnięty na poziomie mniejszym od 3.75;

Student otrzymuje ocenę dobry, gdy posiada zaliczenie z ćwiczeń oraz przeciętna ocena z zaliczenia

każdego efektu spośród weryfikowanych na egzaminie wyniesie co najmniej 3.75, ale chociaż jeden z

efektów został osiągnięty na poziomie mniejszym od 4.75;

Student otrzymuje ocenę bardzo dobry, gdy posiada zaliczenie z ćwiczeń oraz przeciętna ocena z

zaliczenia każdego efektu spośród weryfikowanych na egzaminie wyniesie co najmniej 4.75.

5. CAŁKOWITY NAKŁAD PRACY STUDENTA POTRZEBNY DO OSIĄGNIĘCIA ZAŁOŻONYCH

EFEKTÓW W GODZINACH ORAZ PUNKTACH ECTS

Forma aktywności
Średnia liczba godzin na zrealizowanie

aktywności

Godziny z harmonogramu studiów 90

Inne z udziałem nauczyciela akademickiego
(udział w konsultacjach, egzaminie)

4

Godziny niekontaktowe – praca własna
studenta
(przygotowanie do zajęć, egzaminu, napisanie
referatu itp.)

56

SUMA GODZIN 150

SUMARYCZNA LICZBA PUNKTÓW ECTS 6

* Należy uwzględnić, że 1 pkt ECTS odpowiada 25-30 godzin całkowitego nakładu pracy
studenta.

6. PRAKTYKI ZAWODOWE W RAMACH PRZEDMIOTU

wymiar godzinowy -

zasady i formy odbywania praktyk -

7. LITERATURA

Literatura podstawowa:
1. Aho A.V., Hopcroft J.E., Ullman J.D.: Algorytmy i struktury danych, Helion (2003).
2. Banachowski L., Diks K., Rytter W.: Algorytmy i struktury danych, WNT (2006).
3. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Wprowadzenie do algorytmów, WNT (2004).
4. Lafore R.: Java – algorytmy i struktury danych, Helion (2003).

Literatura uzupełniająca:
1. Banachowski L.: Kreczmar A.: Elementy analizy algorytmów, WNT (1989).
2. Bolc L., Cytowski J.: Metody przeszukiwania heurystycznego, tom I, PWN (1989).
3. Bolc L., Cytowski J.: Metody przeszukiwania heurystycznego, tom II, PWN (1991).
4. Wróblewski P.: Algorytmy, struktury danych i techniki programowania, Helion (2003).
5. Lipski W.: Kombinatoryka dla programistów, WNT (2004)

Akceptacja Kierownika Jednostki lub osoby upoważnionej

