
SYLABUS
DOTYCZY CYKLU KSZTAŁCENIA 2022-2026

Rok akademicki 2024/2025

1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE

Nazwa przedmiotu Programowanie zespołowe

Kod przedmiotu*
nazwa jednostki
prowadzącej kierunek Instytut Informatyki, Wydział Nauk Ścisłych i Technicznych

Nazwa jednostki
realizującej przedmiot

Instytut Informatyki, Wydział Nauk Ścisłych i Technicznych

Kierunek studiów Informatyka i ekonometria

Poziom studiów studia pierwszego stopnia

Profil praktyczny

Forma studiów Studia stacjonarne

Rok i semestr/y studiów rok III, sem. VI

Rodzaj przedmiotu przedmiot kierunkowy

Język wykładowy polski

Koordynator dr hab. Jan Bazan, prof. UR

Imię i nazwisko osoby
prowadzącej / osób
prowadzących

dr hab. Jan Bazan, prof. UR, mgr inż. Adam Szczur, mgr inż. Dawid
Kosior

* -opcjonalnie, zgodnie z ustaleniami w Jednostce

1.1.Formy zajęć dydaktycznych, wymiar godzin i punktów ECTS

Semestr

(nr)
Wykł. Ćw. Konw. Lab. Sem. ZP Prakt.

Inne
(jakie?)

Liczba pkt.
ECTS

6 15 30 4

1.2. Sposób realizacji zajęć

zajęcia w formie tradycyjnej

☐ zajęcia realizowane z wykorzystaniem metod i technik kształcenia na odległość

1.3 Forma zaliczenia przedmiotu (z toku) (egzamin, zaliczenie z oceną, zaliczenie bez oceny)
Zaliczenie z oceną

2.WYMAGANIA WSTĘPNE

Znajomość zagadnień z przedmiotów: programowanie obiektowe, inżynieria oprogramowania,
algorytmy i struktury danych, bazy danych

3. CELE, EFEKTY UCZENIA SIĘ , TREŚCI PROGRAMOWE I STOSOWANE METODY DYDAKTYCZNE

3.1 Cele przedmiotu

C1
Poznanie najnowszych narzędzi tworzenia oprogramowania (które mają być używane przez
studentów na zajęciach laboratoryjnych).

C2
Nauka organizacji pracy zespołu informatycznego w procesie tworzenia, serwisowania i
wdrażania oprogramowania

C3 Wykonanie przez studentów złożonego, praktycznego projektu informatycznego w grupie.

3.2 Efekty uczenia się dla przedmiotu

EK (efekt
uczenia się)

Treść efektu uczenia się zdefiniowanego dla przedmiotu Odniesienie do
efektów
kierunkowych 1

EK_01 Student ma wiedzę i umiejętności z języka programowania
orientowanego obiektowo umożliwiającą realizację projektów.

K_W03, K_U01

EK_02 Student zna i potrafi użyć wybrane narzędzia zespołowego
wytwarzania oprogramowania.

K_W03, K_U01,

K_K01

EK_03 Student rozumie rolę dokumentacji technicznej zadania
informatycznego i ma podstawową wiedzę na temat tworzenia
dokumentacji technicznej tworzonego oprogramowania w
wybranym narzędziu jej tworzenia.

K_W03, K_U13

EK_04 Student potrafi pracować w zespole nad wspólnym projektem. K_U01, K_U10,

K_U11,K_ U13,

K_U16, K_K01

3.3 Treści programowe

A. Problematyka wykładu
Treści merytoryczne

1. Wprowadzenie do projektowania zespołowego (duża waga i trudności programowania
zespołowego, duży wysiłek inżynierii oprogramowania celem opracowania efektywnych metod,
cykl produkcji oprogramowania).

2. Metodologia zarządzania Scrum oraz przykładowe narzędzia do zarządzania projektami.
3. Zasady tworzenia dokumentacji technicznej oraz standardów kodowania oprogramowania.
4. Przegląd wybranych metod przydatnych do efektywnego programowania (wybrane wzorce

projektowe, asercje, dzienniki, techniki testowania).
5. Ogólne wprowadzenie do narzędzi zespołowego wytwarzania oprogramowania na przykładzie

współczesnych narzędzi wytwarzania oprogramowania w języku Java.
6. Narzędzia kompilujące (ANT, MAVEN, GRADLE).
7. Narzędzia kontroli wersji (GIT).
8. Narzędzia ciągłej integracji.
9. Narzędzia mierzenia pokrycie testami jednostkowymi.
10. Narzędzia automatycznego tworzenia dokumentacji technicznej.
11. Docker.
12. Ogólne zalecenia związane z wykorzystaniem powyższych narzędzi do zespołowego tworzenia

oprogramowania.

1 W przypadku ścieżki kształcenia prowadzącej do uzyskania kwalifikacji nauczycielskich uwzględnić również efekty
uczenia się ze standardów kształcenia przygotowującego do wykonywania zawodu nauczyciela.

B. Problematyka ćwiczeń audytoryjnych, konwersatoryjnych, laboratoryjnych, zajęć
praktycznych

Treści merytoryczne

1. Powtórzenie wiadomości z języka Java.

2. Ustalenie 4-5 osobowych zespołów. Wyłonienie liderów grup. Wybranie tematów projektów.

3. Rozpoczęcie pracy z systemem kontroli wersji.

4. Rozpoczęcie pracy z narzędziem do zarządzania projektami.

5. Ustalenie celu i zakresu systemów tworzonych przez każdą z grup.

6. Ustalenie wstępnych wymagań tworzonego systemu w każdej grupie.

7. Modelowanie tworzonego systemu w każdej grupie.

8. Projektowanie tworzonego systemu w każdej grupie.

9. Implementacja wszystkich modułów systemu, w tym dokumentowani systemu (JavaDoc) oraz
pisanie testów biało-skrzynkowych jednostkowych i integracyjnych dla każdego systemu.

10. Wykonanie dokumentacji systemu.

11. Testowanie systemu.

12. Wdrożenie systemu.

13. Zaliczenie projektów.

3.4 Metody dydaktyczne

Wykład z prezentacją multimedialną
Laboratorium: wykonywanie ćwiczeń tablicowych i programistycznych

4. METODY I KRYTERIA OCENY

4.1 Sposoby weryfikacji efektów uczenia się
Symbol efektu

Metody oceny efektów uczenia się
(np.: kolokwium, egzamin ustny, egzamin pisemny,
projekt, sprawozdanie, obserwacja w trakcie zajęć

Forma zajęć

EK_ 01 Dwa kolokwia przy komputerze z programowania obiektowego
(podstawy Javy oraz zaawansowana Java).
Kolokwium praktyczne przy komputerze z tworzenia złożonych
kwerend SQL, weryfikacja podczas przeglądów sprintu oraz
ustne zaliczenie projektu.

lab

EK_ 02 Kolokwium praktyczne przy komputerze z ogólnej znajomości
narzędzia GIT, weryfikacja repozytoriów GitLab/GitHub oraz
tablic sprintów w Jira podczas przeglądów sprintu oraz przy
zaliczeniu projektu.

lab

EK_ 03 Pisemne kolokwium ze stosowania standardów kodowania i
weryfikacja dokumentacji technicznej oprogramowania przy
zaliczeniu projektu

lab

EK_ 04 Weryfikacja repozytoriów GitLab/GitHub oraz tablic sprintów
Jira podczas przeglądów sprintu oraz przy zaliczeniu projektu.

lab

4.2 Warunki zaliczenia przedmiotu (kryteria oceniania)

Efekt Ocena Kryteria otrzymania oceny

EK_01 dst Student ma wiedzę i umiejętności z języka programowania orientowanego
obiektowo umożliwiającą realizację projektów. W szczególności wie jak i
potrafi utworzyć prosty interfejs graficzny użytkownika, w elementarny
sposób skorzystać z bazy danych z poziomu języka oraz utworzyć i użyć
prostą bibliotekę funkcji.

db Student ma wiedzę i umiejętności z języka programowania orientowanego
obiektowo umożliwiającą realizację projektów. W szczególności wie jak i
potrafi utworzyć interfejs graficzny użytkownika zawierający bardziej
zaawansowane elementy, rutynowo korzystać z bazy danych z poziomu
języka oraz utworzyć i użyć bardziej zaawansowana bibliotekę funkcji (np. z
użyciem prostych standardowych struktur danych lub zaawansowanych
metod konstruowania algorytmów).

bdb Student ma wiedzę z języka programowania orientowanego obiektowo
umożliwiającą realizację projektów. W szczególności wie jak i potrafi
utworzyć interfejs graficzny użytkownika zawierający zaawansowane
elementy uwzględniając aspekty intuicyjności i prostoty w użytkowaniu,
optymalnie skorzystać z bazy danych z poziomu języka oraz utworzyć i użyć
bardziej zaawansowana bibliotekę funkcji (np. z użyciem optymalnie
dobranych standardowych struktur danych lub zaawansowanych metod
konstruowania algorytmów).

EK_02 dst Student zna narzędzia zespołowego wytwarzania oprogramowania i potrafi
użyć wybrane narzędzie zespołowego wytwarzania oprogramowania.

db Student zna narzędzia zespołowego wytwarzania oprogramowania, potrafi
porównać dostępne narzędzia oraz potrafi użyć co najmniej dwa wybrane
narzędzie zespołowego wytwarzania oprogramowania.

bdb Student zna narzędzia zespołowego wytwarzania oprogramowania, potrafi
je porównać oraz wskazać optymalne do prac nad danym projektem.
Potrafi także użyć jednocześnie (w kooperacji ze sobą) co najmniej dwa
wybrane narzędzie zespołowego wytwarzania oprogramowania.

EK_03 dst Student rozumie rolę dokumentacji technicznej zadania informatycznego i
ma podstawową wiedzę na temat tworzenia dokumentacji technicznej
tworzonego oprogramowania w wybranym narzędziu jej tworzenia.

db Student rozumie rolę dokumentacji technicznej zadania informatycznego i
ma rozszerzoną wiedzę na temat tworzenia dokumentacji technicznej
tworzonego oprogramowania w wybranym narzędziu jej tworzenia. Jednak
nie zawsze rozumie potrzebę i użyteczność stosowania niektórych
zaawansowanych elementów tworzenia dokumentacji.

bdb Student rozumie rolę dokumentacji technicznej zadania informatycznego i
ma rozszerzoną wiedzę na temat tworzenia dokumentacji technicznej
tworzonego oprogramowania w wybranym narzędziu jej tworzenia oraz
rozumie potrzebę i użyteczność stosowania zaawansowanych elementów
tworzenia dokumentacji.

EK_04 dst Student potrafi pracować w zespole nad wspólnym projektem, przyjmując
ustaloną rolę. Jednak potrafi w pełni zrealizować tylko podstawowe zadania
wyspecyfikowane przez prowadzącego w ramach prac projektowych
według współczesnych standardów znanych z literatury.

db Student potrafi pracować w zespole nad wspólnym projektem, przyjmując
różne role. Jednak nie potrafi w pełni zrealizować wszystkich zadań
wyspecyfikowanych przez prowadzącego w ramach prac projektowych
według współczesnych standardów znanych z literatury.

bdb Student potrafi pracować w zespole nad wspólnym projektem, przyjmując
różne role. Potrafi także w pełni zrealizować wszystkie zadania
wyspecyfikowane przez prowadzącego w ramach prac projektowych
według współczesnych standardów znanych z literatury.

Zasady uzyskania oceny końcowej:

Zaliczenie laboratorium następuje na podstawie zaliczenia wszystkich efektów weryfikowanych przez

planowane w danym okresie metody weryfikacji. Przy czym zakłada się, że każda metoda weryfikacji

dostarcza osobne oceny dla każdego z weryfikowanych przez nią efektów kształcenia. Jeśli dany efekt

jest weryfikowany przez więcej niż jedną metodę, to ocena weryfikująca osiągnięcie tego efektu jest

obliczana jako średnia arytmetyczna ocen uzyskanych w poszczególnych metodach weryfikowania

tego efektu.

Zaliczenie wykładu i przedmiotu następuje na podstawie zaliczenia laboratorium oraz zajęć

projektowych.

Student otrzymuje z zaliczenia ocenę niedostateczny, gdy metody weryfikacji wykażą, iż co najmniej

jeden z efektów nie został osiągnięty (średnia ocena dla tego efektu jest niższa niż 3.0);

Student otrzymuje ocenę dostateczny, gdy przeciętnie każdy z efektów zostanie osiągnięty na

poziomie co najmniej 3.0, ale chociaż jeden z efektów został osiągnięty na poziomie mniejszym od

3.75;

Student otrzymuje ocenę dobry, gdy przeciętnie każdy z efektów zostanie osiągnięty na poziomie co

najmniej 3.75, ale chociaż jeden z efektów został osiągnięty na poziomie mniejszym od 4.75;

Student otrzymuje ocenę bardzo dobry, gdy przeciętnie każdy z efektów zostanie osiągnięty na

poziomie co najmniej 4.75;

5. CAŁKOWITY NAKŁAD PRACY STUDENTA POTRZEBNY DO OSIĄGNIĘCIA ZAŁOŻONYCH

EFEKTÓW W GODZINACH ORAZ PUNKTACH ECTS

Forma aktywności
Średnia liczba godzin na

zrealizowanie aktywności
Godziny kontaktowe wynikające z harmonogramu studiów 45

Inne z udziałem nauczyciela akademickiego
(udział w konsultacjach, egzaminie)

Godziny niekontaktowe – praca własna studenta
(przygotowanie do zajęć, egzaminu, napisanie referatu itp.)

55

SUMA GODZIN 100

SUMARYCZNA LICZBA PUNKTÓW ECTS 4

* Należy uwzględnić, że 1 pkt ECTS odpowiada 25-30 godzin całkowitego nakładu pracy
studenta.

6. PRAKTYKI ZAWODOWE W RAMACH PRZEDMIOTU

wymiar godzinowy -

zasady i formy odbywania praktyk -

7. LITERATURA

Literatura podstawowa:
1. Wykłady Jana Bazana dostępne na MS Teams..
2. J. Ferguson Smart, Java: praktyczne narzędzia, Helion, Gliwice (2009)
3. Schildt, H.: Java. Przewodnik dla początkujących, wydanie VI, Gliwice: Helion (2015).
4. Horstmann, C., S., Cornell, G.: Java, Podstawy, wydanie IX, Gliwice: Helion (2016).
5. Kane, S.,P., Matthias, K.: Docker – praktyczne zastosowania, wydanie II, Gliwice: Helion (2019).

Literatura uzupełniająca:
1. Hunt, D. Thomas, JUnit: pragmatyczne testy jednostkowe w Javie, Helion, Gliwice, (2006).
2. Horstmann, C., S., Cornell, G.: Java, Techniki zaawansowane, wydanie IX, Gliwice: Helion (2017).

Akceptacja Kierownika Jednostki lub osoby upoważnionej

