
 Załącznik nr 1.5 do Zarządzenia Rektora UR nr 7/2023

SYLABUS
DOTYCZY CYKLU KSZTAŁCENIA 2023-2027

Rok akademicki 2023/2024, 2024/2025

1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE

Nazwa przedmiotu Algorytmy i struktury danych

Kod przedmiotu*
Nazwa jednostki prowadzącej
kierunek Instytut Informatyki, Kolegium Nauk Przyrodniczych

Nazwa jednostki realizującej
przedmiot

Instytut Informatyki, Kolegium Nauk Przyrodniczych

Kierunek studiów Informatyka i ekonometria

Poziom studiów studia pierwszego stopnia

Profil praktyczny

Forma studiów Studia stacjonarne

Rok i semestr/y studiów rok I i II, sem. II i III

Rodzaj przedmiotu przedmiot kierunkowy

Język wykładowy polski

Koordynator dr hab. Jan Bazan, prof. UR

Imię i nazwisko osoby prowadzącej
/ osób prowadzących

dr hab. Jan Bazan, prof. UR, dr Wojciech Rząsa, mgr inż.
Adrian Ćwiąkała

* -opcjonalnie, zgodnie z ustaleniami w Jednostce

1.1.Formy zajęć dydaktycznych, wymiar godzin i punktów ECTS

Semestr

(nr)
Wykł. Ćw. Konw. Lab. Sem. ZP Prakt.

Inne
(jakie?)

Liczba pkt.
ECTS

2 30 15 3

3 30 15 3

1.2. Sposób realizacji zajęć

 zajęcia w formie tradycyjnej

☐ zajęcia realizowane z wykorzystaniem metod i technik kształcenia na odległość

1.3 Forma zaliczenia przedmiotu (z toku) (egzamin, zaliczenie z oceną, zaliczenie bez oceny)
ZALICZENIE Z OCENĄ PO SEM. 2 ORAZ EGZAMIN PO SEM. 3

2.WYMAGANIA WSTĘPNE

Znajomość zagadnień realizowanych na przedmiotach: elementy logiki i teorii mnogości,
analiza matematyczna, algebra liniowa z geometrią, podstawy programowania,
programowanie obiektowe (wymaganie do części drugiej przedmiotu)

3. CELE, EFEKTY UCZENIA SIĘ , TREŚCI PROGRAMOWE I STOSOWANE METODY DYDAKTYCZNE

3.1 Cele przedmiotu

C1
Nauczenie studentów metod konstrukcji algorytmów i metod analizy ich złożoności

obliczeniowej.

C2
Nauczenie studentów podstawowych struktur danych oraz metod ich implementacji i

wykorzystania w praktyce.

C3 Zapoznanie studentów z przykładową biblioteką standardowych struktur danych.

3.2 Efekty uczenia się dla przedmiotu/ modułu

EK (efekt
uczenia się)

Treść efektu kształcenia zdefiniowanego dla przedmiotu
(modułu) - wiedza minimalna i minimalne umiejętności
do zaliczenia

Odniesienie do
efektów
kierunkowych
(KEK)

EK_01 Student zna notacje asymptotyczne, metody
wykorzystywania ich do wyznaczania złożoności
obliczeniowej algorytmów oraz techniki obliczeniowe
pozwalające poprawnie wyznaczać złożoność
obliczeniową (czasową i pamięciową) dla algorytmów
iteracyjnych. Jednak niekoniecznie zna w wystarczającym
stopniu techniki obliczeniowe pozwalające na wyznaczanie
złożoności obliczeniowej algorytmów rekurencyjnych. Zna
podstawowe klasy złożoności obliczeniowej algorytmów,
ale być może nie potrafi poprawnie ocenić ich
praktycznego znaczenia do rozwiązywania rzeczywistych
problemów algorytmicznych.

K_W01, K_W02,
K_K02

EK _02 Student zna abstrakcyjne struktury danych, metody ich
implementacji w przynajmniej jednym języku
programowania oraz gotowe implementacje w
dedykowanej bibliotece standardowej, w tym stosy,
kolejki, listy, drzewa, grafy, słowniki, haszowanie, drzewa
przeszukiwań binarnych. W szczególności student zna
budowę tych struktur oraz operacje jakie mogą być
wykonywane na tych strukturach. Jednakże możliwe jest,
iż posiadana wiedza o efektywności tych operacji w
kontekście złożoności obliczeniowej nie pozwala mu na w
pełni poprawne porównanie tych struktur pod względem
ich efektywności obliczeniowej oraz na dobieranie struktur
danych do ustalonych wymagań dotyczących
efektywności obliczeniowej algorytmów.

K_W01, K_W02,
K_K02

EK_03 Student zna zasady formułowania i algorytmizacji zadań
oraz notację zapisu algorytmów w pseudojęzyku i w
wybranym języku programowania, a także podstawowe
techniki i metody projektowania i implementowania
algorytmów, w tym metodę dynamicznego przydziału

K_W01, K_W02

pamięci, rekurencję, metodę brutalnej siły, metodę dziel i
zwyciężaj, programowanie dynamiczne, algorytmy
zachłanne, metodę Monte Carlo, przeszukiwanie z
nawrotami. Zna także podstawowe algorytmy
wyszukiwania i sortowania. Być może jednak nie zawsze
potrafi poprawnie porównać te metody i algorytmy pod
względem efektywności czasowej i dokładności
otrzymanego rozwiązania. Jednak, dla trudniejszych
problemów może zdarzyć się, że niepoprawnie dobierze
metody i algorytmy do wymagań oczekiwanej
efektywności rozwiązania.

EK_04 Student zna metodę dowodzenia semantycznej
poprawności algorytmów, w tym poszczególne jej kroki
(dowód częściowej poprawności, dowód własności
określoności i dowód własności stopu) oraz rozumie te
kroki. Nie musi jednak znać wszystkich metod dowodzenia
tych kroków oraz uzasadnienia praktycznego dla
zasadności każdego z tych kroków.

K_W01, K_W02,
K_K02

EK_05 Student umie poprawnie śledzić algorytm bez rekurencji
zapisany w wybranym języku programowania lub w tzw.
pseudojęzyku.

K_U01, K_U02

EK_06 Student potrafi zastosować abstrakcyjne typy danych do
rozwiązywania problemów z użyciem języka
programowania, przy czym zawsze poprawnie operuje na
strukturach danych przechowujących tylko wartości typów
konkretnych.

K_U01, K_U02

EK_07 Student potrafi poprawnie wyznaczać złożoność
obliczeniową algorytmów (czasową i pamięciową) przy
wykorzystaniu notacji asymptotycznych dla algorytmów
iteracyjnych. Jednak być może nie zawsze poprawnie
wyznacza złożoności obliczeniowe algorytmów
rekurencyjnych

K_U01, K_U02

EK_08 Student potrafi poprawnie wykorzystać podstawowe
techniki i metody projektowania i implementowania
algorytmów, w tym metodę dynamicznego przydziału
pamięci, rekurencję, metodę brutalnej siły, metodę dziel i
zwyciężaj, programowanie dynamiczne, algorytmy
zachłanne, metodę Monte Carlo, przeszukiwanie z
nawrotami oraz algorytmy sortowania, wyszukiwania i
przeszukiwania grafów. Zaprojektowane i
zaimplementowane przez studenta algorytmy zawsze
posiadają własność stopu. Jednak dopuszcza się, by
skonstruowany przez studenta algorytm miał dwa błędy
umożliwiające uznanie go za poprawny z punktu widzenia
określoności operacji stosowanych w algorytmie lub
poprawności uzyskanych na wyjściu algorytmu wyników.

K_U01, K_U02

EK_09 Student weryfikuje semantyczną poprawność algorytmów
w takim zakresie, że potrafi poprawnie zdefiniować
warunki alfa i beta częściowej poprawności algorytmu oraz

K_U01, K_U02

poprawnie formułuje warunek stopu i warunek
określoności algorytmu. Nie zawsze jednak musi potrafić
poprawnie udowodnić częściową poprawność oraz
warunki stopu i określoności algorytmu.

3.3 Treści programowe

A. Problematyka wykładu

Treści merytoryczne

Część pierwsza (semestr 2)

1. Ogólne wprowadzenie do przedmiotu. Pseudojęzyk. Śledzenie algorytmów bez rekurencji.

2. Złożoność obliczeniowa algorytmów bez rekurencji.

3. Wybrane metody rozwiązywanie równań rekurencyjnych.

4. Algorytmy z rekurencją i ich śledzenie.

5. Złożoność obliczeniowa algorytmów z rekurencją.

6. Zarys semantycznej poprawności algorytmów i jej praktyczny aspekt (asercje, testy
jednostkowe, dzienniki itd.).

Część druga (semestr 3)

7. Wprowadzenie do metod konstruowania algorytmów.

8. Algorytmy przeszukiwania wyczerpującego

9. Metoda dziel i zwyciężaj oraz programowanie dynamiczne

10. Algorytmy aproksymacyjne.

11. Abstrakcyjne struktury danych (lista, zbiór, drzewo, graf, słownik).

12. Konkretne struktury danych (tablica dynamiczna, lista powiązana, drzewo binarne, tablica
mieszająca).

13. Metody implementacji abstrakcyjnych struktur danych.

14. Podstawowe algorytmy wyszukiwania i sortowania.

15. Implementacja grafów i wybrane algorytmy grafowe.

16. Trudność problemów.

B. Problematyka ćwiczeń audytoryjnych, konwersatoryjnych, laboratoryjnych, zajęć

praktycznych

Treści merytoryczne

Część pierwsza (semestr 2)

1. Zadania na konstruowanie i śledzenie algorytmów bez rekurencji.

2. Zadania na wyznaczanie złożoności obliczeniowej algorytmów bez rekurencji.

3. Zadania na rozwiązywanie równań rekurencyjnych.

4. Zadania na konstruowanie i śledzenie algorytmów rekurencyjnych.

5. Zadania na wyznaczanie złożoności obliczeniowej algorytmów rekurencyjnych.

6. Zadania na dowodzenie semantycznej poprawności algorytmów.

Część druga (semestr 3)

7. Zadanie na konstrukcję algorytmów metodami przeszukiwania wyczerpującego.

8. Zadanie na konstrukcję algorytmów metodami przeszukiwania z nawrotami.

9. Zadanie na konstrukcję algorytmów metodami dziel i zwyciężaj oraz na programowanie
dynamiczne.

10. Zadania na konstrukcję algorytmów zachłannych

11. Zadania na konstrukcję algorytmów metodami stochastycznymi.

12. Zadania na implementację abstrakcyjnych struktur danych, także z użyciem standardowych
struktur danych.

13. Zadania na wyszukiwanie i sortowanie, także z użyciem standardowych implementacji
algorytmów dostępnych w bibliotece standardowych struktur danych.

3.4 Metody dydaktyczne

Wykład: wykład z prezentacją multimedialną.
Ćwiczenia: rozwiązywanie zadań "tablicowych".
Laboratorium: rozwiązywanie zadań, w tym programistycznych z użyciem komputera.

4. METODY I KRYTERIA OCENY

4.1 Sposoby weryfikacji efektów uczenia się

Symbol efektu

Metody oceny efektów kształcenia

(np.: kolokwium, egzamin ustny, egzamin

pisemny, projekt, sprawozdanie, obserwacja w

trakcie zajęć)

Forma zajęć

dydaktycznych

(w, ćw, …)

EK_ 01 Kolokwium pisemne, egzamin pisemny W, ĆW

EK_ 02 Kolokwium pisemne, egzamin pisemny W, ĆW

EK_ 03 Kolokwium pisemne, egzamin pisemny W, LAB

EK_ 04 Kolokwium pisemne, egzamin pisemny W, ĆW

EK_ 05 Kolokwium pisemne W, ĆW

EK_ 06 Kolokwium przy komputerze W, LAB

EK_ 07 Kolokwium pisemne W, ĆW

EK_ 08 Kolokwium przy komputerze W, LAB

EK_ 09 Kolokwium pisemne W, ĆW

4.2 Warunki zaliczenia przedmiotu (kryteria oceniania)

Efekt Ocena Kryteria otrzymania oceny

EK_01 dst Student zna notacje asymptotyczne, metody wykorzystywania ich do

wyznaczania złożoności obliczeniowej algorytmów oraz techniki

obliczeniowe pozwalające poprawnie wyznaczać złożoność obliczeniową

(czasową i pamięciową) tylko dla algorytmów iteracyjnych. Nie zna lub zna

w niewystarczającym stopniu techniki obliczeniowe pozwalające na

wyznaczanie złożoności dla algorytmów rekurencyjnych. Zna podstawowe

klasy złożoności obliczeniowej algorytmów, ale nie zawsze potrafi je

porównać z punktu widzenia złożoności obliczeniowej oraz poprawnie

ocenić ich praktyczne znaczenie do rozwiązywania rzeczywistych

problemów algorytmicznych.

db Student zna notacje asymptotyczne, metody wykorzystywania ich do

wyznaczania złożoności obliczeniowej algorytmów, ale zna niezbędne

techniki obliczeniowe pozwalające poprawnie wyznaczać złożoność

obliczeniową (czasową i pamięciową) tylko dla algorytmów iteracyjnych

oraz dla algorytmów z rekurencją prostą. Nie zna lub zna w

niewystarczającym stopniu techniki obliczeniowe pozwalające na

wyznaczanie złożoności dla algorytmów z rekurencją rozgałęzioną. Zna

podstawowe klasy złożoności obliczeniowej algorytmów oraz potrafi je

porównać z punktu widzenia złożoności obliczeniowej, ale nie zawsze potrafi

poprawnie ocenić ich praktyczne znaczenie do rozwiązywania rzeczywistych

problemów algorytmicznych.

bdb Student zna notacje asymptotyczne, metody wykorzystywania ich do

wyznaczania złożoności obliczeniowej algorytmów, w tym niezbędne

techniki obliczeniowe pozwalające poprawnie wyznaczać złożoność

obliczeniową (czasową i pamięciową) zarówno dla algorytmów iteracyjnych,

jak i dla algorytmów z rekurencją (w tym prostą i rozgałęzioną). Zna

podstawowe klasy złożoności obliczeniowej algorytmów, potrafi je

porównać z punktu widzenia złożoności obliczeniowej oraz potrafi ocenić ich

praktyczne znaczenie do rozwiązywania rzeczywistych problemów

algorytmicznych.

EK_02 dst Student zna abstrakcyjne struktury danych, metody ich implementacji

w przynajmniej jednym języku programowania oraz gotowe implementacje

w dedykowanej bibliotece standardowej, w tym stosy, kolejki, listy, drzewa,

grafy, słowniki, haszowanie, drzewa przeszukiwań binarnych.

W szczególności student zna budowę tych struktur oraz operacje jakie mogą

być wykonywane na tych strukturach. Jednakże posiadana wiedza o

efektywności tych operacji w konkretnych implementacjach tych struktur

w kontekście złożoności obliczeniowej, nie pozwala mu na w pełni poprawne

porównanie tych struktur pod względem ich efektywności obliczeniowej

oraz na dobieranie struktur danych do ustalonych wymagań dotyczących

efektywności obliczeniowej algorytmów.

db Student zna abstrakcyjne struktury danych, metody ich implementacji w

przynajmniej jednym języku programowania oraz gotowe implementacje w

dedykowanej bibliotece standardowej, w tym stosy, kolejki, listy, drzewa,

grafy, słowniki, haszowanie, drzewa przeszukiwań binarnych. W

szczególności student zna budowę tych struktur oraz operacje jakie mogą

być wykonywane na tych strukturach. Ponadto, ma wiedzę o efektywności

tych operacji w kontekście złożoności obliczeniowej, co daje mu możliwość

porównania tych struktur pod względem ich efektywności obliczeniowej.

Nie potrafi jednak w pełni poprawnie dobierać struktur danych do

ustalonych wymagań dotyczących efektywności obliczeniowej rozwiązania

danego problemu algorytmicznego.

bdb Student zna abstrakcyjne struktury danych, metody ich implementacji w

przynajmniej jednym języku programowania oraz gotowe implementacje w

dedykowanej bibliotece standardowej, w tym stosy, kolejki, listy, drzewa,

grafy, słowniki, haszowanie, drzewa przeszukiwań binarnych. W

szczególności student zna budowę tych struktur oraz operacje jakie mogą

być wykonywane na tych strukturach. Ponadto, ma wiedzę o efektywności

tych operacji w kontekście złożoności obliczeniowej, co daje mu możliwość

porównania tych struktur pod względem ich efektywności obliczeniowej

oraz dobierania struktur danych do ustalonych wymagań dotyczących

efektywności obliczeniowej.

EK_03 dst Student zna zasady formułowania i algorytmizacji zadań oraz notację zapisu

algorytmów w pseudojęzyku i w wybranym języku programowania, a także

podstawowe techniki i metody projektowania i implementowania

algorytmów, w tym metodę dynamicznego przydziału pamięci, rekurencję,

metodę brutalnej siły, metodę dziel i zwyciężaj, programowanie

dynamiczne, algorytmy zachłanne, metodę Monte Carlo, przeszukiwanie z

nawrotami. Zna także podstawowe algorytmy wyszukiwania i sortowania.

Jednak nie zawsze potrafi poprawnie porównać te metody algorytmy pod

względem efektywności czasowej i dokładności otrzymanego rozwiązania.

Nie zawsze potrafi także dobrze dobierać metody i algorytmy do wymagań

oczekiwanej efektywności rozwiązania danego problemu.

db Student zna zasady formułowania i algorytmizacji zadań oraz notację zapisu

algorytmów w pseudojęzyku i w wybranym języku programowania, a także

podstawowe techniki i metody projektowania i implementowania

algorytmów, w tym metodę dynamicznego przydziału pamięci, rekurencję,

metodę brutalnej siły, metodę dziel i zwyciężaj, programowanie

dynamiczne, algorytmy zachłanne, metodę Monte Carlo, przeszukiwanie z

nawrotami. Zna także podstawowe algorytmy wyszukiwania i sortowania.

Potrafi porównać te metody i algorytmy pod względem efektywności

czasowej i dokładności otrzymanego rozwiązania. Nie zawsze potrafi jednak

dobrze dobierać metody i algorytmy do wymagań oczekiwanej

efektywności rozwiązania danego problemu.

bdb Student zna zasady formułowania i algorytmizacji zadań oraz notację zapisu

algorytmów w pseudojęzyku i w wybranym języku programowania, a także

podstawowe techniki i metody projektowania i implementowania

algorytmów, w tym metodę dynamicznego przydziału pamięci, rekurencję,

metodę brutalnej siły, metodę dziel i zwyciężaj, programowanie

dynamiczne, algorytmy zachłanne, metodę Monte Carlo, przeszukiwanie z

nawrotami. Zna także podstawowe algorytmy wyszukiwania i sortowania.

Potrafi porównać te metody i algorytmy pod względem efektywności

czasowej i dokładności otrzymanego rozwiązania, a także poprawnie

dobiera metody do wymagań oczekiwanej efektywności rozwiązania

danego problemu.

EK_04 dst Student zna metodę dowodzenia semantycznej poprawności algorytmów,

w tym poszczególne jej kroki (dowód częściowej poprawności, dowód

własności określoności i dowód własności stopu) oraz rozumie te kroki. Nie

zna jednak metod dowodzenia wszystkich tych kroków oraz nie zna

uzasadnienia praktycznego dla zasadności każdego z tych kroków.

db Student zna metodę dowodzenia semantycznej poprawności algorytmów,

w tym poszczególne jej kroki (dowód częściowej poprawności, dowód

własności określoności i dowód własności stopu) oraz rozumie te kroki oraz

zna metody dowodzenia tych kroków. Jednak nie zna uzasadnienia

praktycznego dla zasadności każdego z tych kroków.

bdb Student zna metodę dowodzenia semantycznej poprawności algorytmów,

w tym poszczególne jej kroki (dowód częściowej poprawności, dowód

własności określoności i dowód własności stopu), rozumie te kroki, zna

metody dowodzenia tych kroków oraz potrafi uzasadnić praktycznie

zasadność każdego z tych kroków.

EK_05 dst Student umie śledzić algorytm iteracyjny bez rekurencji zapisany w

wybranym języku programowania lub w tzw. pseudojęzyku.

db Student umie śledzić algorytm iteracyjny bez rekurencji rozgałęzionej

zapisany w wybranym języku programowania lub w tzw. pseudojęzyku.

bdb Student umie śledzić algorytm iteracyjny oraz rekurencyjny (w tym z

rekurencją rozgałęzioną) zapisany w wybranym języku programowania lub

w tzw. pseudojęzyku.

EK_06 dst Student potrafi zastosować abstrakcyjne typy danych do rozwiązywania

problemów z użyciem języka programowania, przy czym operuje na

strukturach danych przechowujących tylko wartości typów prostych (np.

int, byte, float, double, char, boolean itd.)

db Student potrafi zastosować abstrakcyjne typy danych do rozwiązywania

problemów z użyciem języka programowania, przy czym operuje na

strukturach danych przechowujących tylko wartości typów prostych i

obiektowych-zdefiniowanych (np. String, Integer, Double, itd.).

bdb Student potrafi zastosować abstrakcyjne typy danych do rozwiązywania

problemów z użyciem języka programowania, przy czym operuje na

strukturach danych przechowujących wartości dowolnych typów prostych i

obiektowych, w tym typów zdefiniowanych przez studenta (np. Osoba,

Punkt, itd.).

EK_07 dst Student potrafi poprawnie wyznaczać złożoność obliczeniową algorytmów

(czasową i pamięciową) przy wykorzystaniu notacji asymptotycznych dla

algorytmów iteracyjnych. Nie potrafi poprawnie wyznaczać złożoności

obliczeniowej algorytmów dla algorytmów rekurencyjnych.

db Student potrafi poprawnie wyznaczać złożoność obliczeniową algorytmów

(czasową i pamięciową) przy wykorzystaniu notacji asymptotycznych dla

algorytmów iteracyjnych oraz dla algorytmów rekurencyjnych bez

rekurencji rozgałęzionej. Nie potrafi poprawnie wyznaczać złożoności

obliczeniowej algorytmów dla algorytmów z rekurencją rozgałęzioną.

bdb Student potrafi poprawnie wyznaczać złożoność obliczeniową algorytmów

(czasową i pamięciową) przy wykorzystaniu notacji asymptotycznych dla

algorytmów iteracyjnych oraz dla algorytmów rekurencyjnych (w tym z

rekurencją rozgałęzioną).

EK_08 dst Student potrafi poprawnie wykorzystać podstawowe techniki i metody

projektowania i implementowania algorytmów, w tym metodę

dynamicznego przydziału pamięci, rekurencję, metodę brutalnej siły,

metodę dziel i zwyciężaj, programowanie dynamiczne, algorytmy

zachłanne, metodę Monte Carlo, przeszukiwanie z nawrotami oraz

algorytmy sortowania, wyszukiwania i przeszukiwania grafów.

Zaprojektowane i zaimplementowane przez studenta algorytmy zawsze

posiadają własność stopu. Jednak algorytm skonstruowany przez studenta

podczas weryfikacji efektu kształcenia ma 2 błędy umożliwiające uznanie

go za poprawny z punktu widzenia określoności operacji stosowanych w

algorytmie lub poprawności uzyskanych na wyjściu algorytmu wyników.

db Student potrafi poprawnie wykorzystać podstawowe techniki i metody

projektowania i implementowania algorytmów, w tym metodę

dynamicznego przydziału pamięci, rekurencję, metodę brutalnej siły,

metodę dziel i zwyciężaj, programowanie dynamiczne, algorytmy

zachłanne, metodę Monte Carlo, przeszukiwanie z nawrotami oraz

algorytmy sortowania, wyszukiwania i przeszukiwania grafów.

Zaprojektowane i zaimplementowane przez studenta algorytmy zawsze

posiadają własność stopu. Jednak algorytm skonstruowany przez studenta

podczas weryfikacji efektu kształcenia ma jeden błąd umożliwiający uznanie

go za poprawny z punktu widzenia określoności operacji stosowanych w

algorytmie lub poprawności uzyskanych na wyjściu algorytmu wyników.

bdb Student potrafi poprawnie wykorzystać podstawowe techniki i metody

projektowania i implementowania algorytmów, w tym metodę

dynamicznego przydziału pamięci, rekurencję, metodę brutalnej siły,

metodę dziel i zwyciężaj, programowanie dynamiczne, algorytmy

zachłanne, metodę Monte Carlo, przeszukiwanie z nawrotami oraz

algorytmy sortowania, wyszukiwania i przeszukiwania grafów.

Zaprojektowane i zaimplementowane przez studenta algorytmy zawsze

posiadają własność stopu. Ponadto, algorytm skonstruowany przez

studenta podczas weryfikacji efektu kształcenia jest poprawny z punktu

widzenia określoności operacji stosowanych w algorytmie oraz poprawności

uzyskanych na wyjściu algorytmu wyników.

EK_09 dst Student weryfikuje semantyczną poprawność algorytmów w takim

zakresie, że potrafi poprawnie zdefiniować warunki alfa i beta częściowej

poprawności algorytmu oraz poprawnie formułuje warunek stopu i

warunek określoności algorytmu. Nie potrafi jednak udowodnić formalnie

częściowej poprawności oraz warunku stopu i określoności algorytmu.

db Student weryfikuje semantyczną poprawność algorytmów w takim zakresie,

że potrafi poprawnie zdefiniować warunki alfa i beta częściowej

poprawności algorytmu oraz poprawnie formułuje warunek stopu i warunek

określoności algorytmu. Potrafi także uzasadnić warunek stopu i

określoności algorytmu Nie potrafi jednak udowodnić formalnie częściowej

poprawności algorytmu.

bdb Student w pełni potrafi przeprowadzić weryfikację semantycznej

poprawności algorytmu, tzn. potrafi poprawnie zdefiniować warunki alfa i

beta częściowej poprawności algorytmu oraz warunek stopu i warunek

określoności algorytmu. Potrafi także uzasadnić warunek stopu i

określoności algorytmu, oraz udowodnić formalnie częściową poprawność

algorytmu.

Zasady uzyskania oceny końcowej:

Zaliczenie ćwiczeń i laboratorium następuje na podstawie zaliczenia wszystkich efektów

weryfikowanych przez planowane w danym okresie metody weryfikacji. Przy tym zakłada się,

że każda metoda weryfikacji dostarcza osobne oceny dla każdego z weryfikowanych przez nią

efektów kształcenia. Jeśli dany efekt jest weryfikowany przez więcej niż jedną metodę, to ocena

weryfikująca osiągnięcie tego efektu jest obliczana jako średnia arytmetyczna ocen uzyskanych

w poszczególnych metodach weryfikowania tego efektu.

Student otrzymuje z zaliczenia ocenę niedostateczny, gdy metody weryfikacji wykażą, iż co

najmniej jeden z efektów nie został osiągnięty (średnia ocena dla tego efektu jest niższa niż 3.0);

Student otrzymuje ocenę dostateczny, gdy przeciętnie każdy z efektów zostanie osiągnięty na

poziomie co najmniej 3.0, ale chociaż jeden z efektów został osiągnięty na poziomie mniejszym

od 3.75;

Student otrzymuje ocenę dobry, gdy przeciętnie każdy z efektów zostanie osiągnięty na

poziomie co najmniej 3.75, ale chociaż jeden z efektów został osiągnięty na poziomie mniejszym

od 4.75;

Student otrzymuje ocenę bardzo dobry, gdy przeciętnie każdy z efektów zostanie osiągnięty

na poziomie co najmniej 4.75;

Zaliczenie przedmiotu następuje na podstawie oceny uzyskanej na egzaminie

Student otrzymuje ocenę niedostateczny, gdy nie zaliczył ćwiczeń lub egzamin wykaże, iż co

najmniej jeden z efektów nie został osiągnięty (średnia ocena dla tego efektu jest niższa niż 3.0);

Student otrzymuje ocenę dostateczny, gdy posiada zaliczenie z ćwiczeń, a przeciętnie każdy z

efektów weryfikowanych na egzaminie zostanie osiągnięty na poziomie co najmniej 3.0, ale

chociaż jeden z efektów został osiągnięty na poziomie mniejszym od 3.75;

Student otrzymuje ocenę dobry, gdy posiada zaliczenie z ćwiczeń oraz przeciętna ocena z

zaliczenia każdego efektu spośród weryfikowanych na egzaminie wyniesie co najmniej 3.75, ale

chociaż jeden z efektów został osiągnięty na poziomie mniejszym od 4.75;

Student otrzymuje ocenę bardzo dobry, gdy posiada zaliczenie z ćwiczeń oraz przeciętna

ocena z zaliczenia każdego efektu spośród weryfikowanych na egzaminie wyniesie co najmniej

4.75.

5. CAŁKOWITY NAKŁAD PRACY STUDENTA POTRZEBNY DO OSIĄGNIĘCIA ZAŁOŻONYCH

EFEKTÓW W GODZINACH ORAZ PUNKTACH ECTS

Forma aktywności
Średnia liczba godzin na

zrealizowanie aktywności

Godziny z harmonogramu studiów 90

Inne z udziałem nauczyciela akademickiego
(udział w konsultacjach, egzaminie)

4

Godziny niekontaktowe – praca własna studenta
(przygotowanie do zajęć, egzaminu, napisanie referatu itp.)

56

SUMA GODZIN 150

SUMARYCZNA LICZBA PUNKTÓW ECTS 6

* Należy uwzględnić, że 1 pkt ECTS odpowiada 25-30 godzin całkowitego nakładu pracy studenta.

6. PRAKTYKI ZAWODOWE W RAMACH PRZEDMIOTU

wymiar godzinowy -

zasady i formy odbywania praktyk -

7. LITERATURA

Literatura podstawowa:
1. Aho A.V., Hopcroft J.E., Ullman J.D.: Algorytmy i struktury danych, Helion (2003).
2. Banachowski L., Diks K., Rytter W.: Algorytmy i struktury danych, WNT (2006).
3. Cormen T.H., Leiserson C.E., Rivest R.L., Stein C.: Wprowadzenie do algorytmów, WNT

(2004).
4. Lafore R.: Java – algorytmy i struktury danych, Helion (2003).

Literatura uzupełniająca:
1. Banachowski L.: Kreczmar A.: Elementy analizy algorytmów, WNT (1989).
2. Bolc L., Cytowski J.: Metody przeszukiwania heurystycznego, tom I, PWN (1989).
3. Bolc L., Cytowski J.: Metody przeszukiwania heurystycznego, tom II, PWN (1991).
4. Wróblewski P.: Algorytmy, struktury danych i techniki programowania, Helion (2003).
5. Lipski W.: Kombinatoryka dla programistów, WNT (2004)

Akceptacja Kierownika Jednostki lub osoby upoważnionej

