ER	ASN	AUS	201	0/2	011

Faculty/ Field of study: Faculty/	aculty of M	1athema	tics and Natura	1 Sciences / Computer Science
Departmental Coordinato	r: dr inż. P	iotr Ro	manowski e-	mail: proman@univ.rzeszow.p
Winter/Summer semester	2010/2011			
urse name	Number	ECTS	Teacher	Language

Course name	Number of hours	ECTS	Teacher	Language
Mathematical Anaysis	30/45		Dr. Andrzej Gębarowski	Polish, English

Date and coordinator signature	Date and dean signature

SYLLABUS

SUBJECT: MATHEMATICAL ANALYSIS
Teacher: dr Andrzej Gębarowski

COURSE DESCRIPTION:

The purpose of the course is to provide the fundamentals of mathematics used in computer science applications.

Lecture: Introduction to the Theory of Limits in R. The limit of sequence. Sufficient condition existence of limit. Number e. Theorems concerning limits. Examples. Infinite Series. The sum of series. Series of positive therms. Tests for convergence. The geometric series, absolute convergence of series. Operations on the series. The Derivative. The limit of a function, continuity. The derivative. Higher order derivatives. Rules of differentiation. Application of the derivative. Lagrange and Taylor's theorems and its applications. Extreme values. Concavity and intervals of monotony function. Asymptotes. Partial derivatives. Taylor's formula for the function two variables. Local extreme values. The Indefinite Integral. Methods of integration. Riemann's integral and its applications. Improper Integrals (unbounded interval, unbounded integrand). The functions series and power series. Differentiation and integration of power series. Taylor's and the Maclaurin's series for function f. Differential Equations and their solutions. Types of differential equations. The Cauchy problem (initial value problem) for a differential equation. Solution techniques for first-order equations. Second-order linear equations with constant coefficients.

Classes: Practical exercises concerning realization of basic notions from lectures; limit of sequence, convergence of series, operations on the series, application of the derivative, local

function	ne values of the function two variables, application of Riemann's integral, expanding on in power series, solution techniques for ordynary differential equations.
	NING OUTCOMES:
	lent should receive a basic knowledge about fundamentals of mathematics.
	ING POLICY:
Lectu	re: Written test.
	es: Two written tests and short questions before every classes.
TIME	ГАВLЕ
Numb	er of hours:
	re: 2h x 15 weeks = 30 hours (1 semester)
TEXTI	BOOK AND REQUIRED MATERIALS:
1.	L. I. Holder, Calculus with Analytic Geometry, Wadsworth Pub. Com. , California
2. 3.	K. Kuratorski, <i>Rachunek różniczkowy i całkowy</i> , PWN (1979) R. Rudnicki, <i>Wykłady z analizy matematycznej</i> , PWN (2002)
4.	W. Krysicki, L. Włodarski, <i>Analiza matematyczna w zadaniach</i> , PWN, wydanie dowolne
5.	G. M. Fichtenholz, Rachunek różniczkowy i całkowy, PWN wyd. dowolne
6.	J. Banaś, S. Wędrychowicz, Zbiór zadań z analizy matematycznej, Wydaw. Nauk. Tech. (1996)
Preri	EQUISITES:
High s	school course in mathematics
	Date and lecturer signature